

 [image: PDFtalk]PDFtalk
The Smalltalk library for PDF

	

 Tools

 	
 User Tools
	Log In
	
	
 Site Tools
	Recent Changes
	Media Manager
	Sitemap
	
	
 Page Tools
	Show pagesource
	Old revisions
	Backlinks
	Fold/unfold all
	Back to top

 	

 Log In

 [bookmark: dokuwiki__top]

 	Trace
	Values

 Sidebar

 Getting Started

 Documentation

 PDFtalk Snooper

 Release Notes

 Demos & Examples

 Related Projects

 All Documents

 	Show pagesource
	Old revisions
	Backlinks
	Fold/unfold all
	Back to top

 	Share via	 Share via...
	 Twitter
	 LinkedIn
	 Facebook
	 Pinterest
	 Telegram
	 WhatsApp
	 Yammer
	 Reddit
	 Teams

	Recent Changes
	Send via e-Mail
	Print
	Permalink

 ×

 Table of Contents

	Complex Values
	Motivation
	Using Values
	Anatomy of a Value
	Get it
	References

This is an old revision of the document!

Complex Values

The Values package is my base library for almost everything I do. It provides Values (as opposed to Objects) which are simple, immutable objects. Values can only be created but never modified. This allows for a functional programming style and simplyfies systems, since much less state has to be maintained. Especially I like to see all structure and details (of complex values) at a glance and the ease of creating test values.

Motivation

The project grew out of the way I model simple objects which is strongly influenced by the functional and dynamic language Lisp. I recognized a pattern and codified support infrastructure for this style. To provide the facilities, I created the class Value as superclass for values. The feature why I implemented this was defaults for instance variables which meant that to needed 2^^(numberOfDefaultVariables) consturctor methods to cover all possibilities. That was far to labour intensive and error prone to do by hand - hence the Values package.

With Values codified, I could write a generic printing method for values which prints them as Smalltalk source which, when evaluated, results in the same value. Values are literal. This is very useful for example and test instances as well as for writing and reading them (files or sockets). But the nicest property of this is the you can see a value with all details at a glance.

Now, I use Values for more than 10 years and I cannot do without it anymore. Most of the classes I define are Values. Objects are used for the “moving parts”, the complex stuff. Since Values are so trivial and simple, I do not need to spend much time with them - they just work very reliable. Instead I can concentrate on complicated objects at the heart of the app. By sourcing out functionalities to Values, the systems become simpler.

Using Values

To define a new Value class:

	 create a new subclass of Value without instance variables and “Subclass responsibilities” checked

	 edit he class method #localSpecification of the new class

	 add a pragma for each instance variable describing the variable

	 open the popup menu on the new class and select “add Value methods…”. This generates all methods.

	 edit the class method #example to provide a useful value

Done.

Now you have:

	 a class with the specified instance variables

	 an accessor for each variable with the same name

	 an initializer with all parameters which sets up a fresh value

	 a constructor taking all parameters and the sole caller of the initializer

	 (2^^<numberOfDefaultVariables>) - 1 optional constructors

	 an example

Lets have an example for example:

Person
 name: 'Christian Haider'
 sex: #male
 birthday: (Date d: 25 m: 6 y: 1960)

Withit you can:

	 create a value with person := Person example

	 ask for its parts person name "returns 'Christian Haider' "

	 print it as code person asSource "returns
'Person
 name: ''Christian Haider''
 sex: #male
 birthday: (Date d: 25 m: 6 y: 1960)' "

	 get the value from its code person class evaluate: person asSource "returns a value equal to person"

	 add fancy access methods like weekdayAtBirth
 ^self birthday weekday

Anatomy of a Value

A value has instance variables which can only contain values. The order of the variables is relevant and is used extensively. It is recommended to order the variables by importance.

Example: Class Person (subclass of Value)

	 name

	 sex

	 birthday

Each variable has a simple getter method with a comment indicating the class.

Person>>name
 "<String>"
 ^name

Person>>sex
 "<Symbol>"
 ^sex

Person>>birthday
 "<Date>"
 ^birthday

The variables are set all at once by an initalizing method which has all initial values as parameters.
The object becomes immutable after initialization and all instance variables are effectively constants.

Person>>initializeName: aString sex: aSymbol birthday: aDate
 name := aString.
 sex := aSymbol.
 birthday := aDate.
 self beImmutable

The one initializer is called by the constructor on the class side. The constructor returns a fully initialized immutable instance.

Person class>>name: aString sex: aSymbol birthday: aDate
 | inst |
 inst := self new.
 inst initializeName: aString sex: aSymbol birthday: aDate.
 ^inst

Every value class has an #example mthod. This serves for test cases and as nice place to copy code from.

Person class>>example
 ^Person
 name: 'Christian Haider'
 sex: #male
 birthday: (Date d: 25 m: 6 y: 1960)

The initializer, the constuctor, the example, the accessor methods and a printer method (not shown) are gernerated from a specification class method containing a list of pragmas defining each variable.

Person class>>localSpecification
 <constant: #name class: #{String}>
 <constant: #sex class: #{Symbol}>
 <constant: #bithday class: #{Date}>

Defaults

The simple values above are not very interesting. But when you define defaults for some of the variables, Values become more useful

Get it

The Smalltalk code lives in the Cincom Public Store as bundle Values Project which you can load into your VisualWorks image.

References

I wrote a (scientific) dry paper about it and presented it at ESUG 2009 in Brest. I think that nobody understood it… [image: :-)]. You can buy the paper from the ACM or you can see the draft of the paper with identical content on which the ACM does not have the copyright. The slides of the talk are here.

 	 complexvalues.1546616286.txt.gz
	 Last modified: 2019/01/04 16:38
	by christian

 [image: PDFtalk]

 PDFtalk

 The Smalltalk library for PDF

 [image: cc] [image: by]

 Except where otherwise noted, content on this wiki is licensed under the following license:
CC Attribution 4.0 International

 	

 [image: Bootstrap template for DokuWiki]

	

 [image: Powered by PHP]

	

 [image: Valid HTML5]

	

 [image: Valid CSS]

	

 [image: Driven by DokuWiki]

 [image:]

