Complex Values in Smalltalk

Thomas J. Schrader

counseling developer
Thomas.J.Schrader@web.de

Abstract Distinguishing between stateful objects
and Values has long been recognized as fruitful. Values
are universal context free abstractions that prevent side-
effects and allow for a functional programming style.
Though object-oriented programming languages pro-
vide simple Values like Integer and String, more com-
plex Values are usually not supported. We show how to
model complex structures as Values in Smalltalk, which
allows for a simple and versatile implementation. The
resulting Smalltalk systems are simple, clear and easily
testable.

Categories and Subject Descriptors D.3.3 [Pro-
gramming Languages]: Language Constructs and
Features—Classes and objects

Keywords Value Objects, serialization, testability,
refactoring, functional programming, Smalltalk

1. Introduction

<Good Design: A system should be built with
a minimum set of unchangeable parts; those
parts should be as general as possible; and all
parts of the system should be held in a uniform
framework.> [Ingalls81, 2nd principle]

Object-oriented software designers have long real-
ized that conventional object systems can lack informa-
tion integrity due to their design based on conventional
changeable stateful objects. Particularly software work-
flows with lots of different data options are a common
source of failure in conventional object systems and can
be hard to design, to maintain and to test.

As early as 1982 Bruce MacLennan' called for the
recognition of values in object-oriented languages as a

Isee [MacLennan82]

Copyright is held by the author/owner(s).

ACM [to be supplied].

Christian Haider

Smalltalked Visuals GmbH
Christian.Haider@smalltalked-visuals.com

powerful complementary modeling concept to conven-
tional objects. Properly distinguishing values from ob-
jects in order to permit a functional programming style
helps to overcome such problems.?

MacLennan stated four key properties of values:

e values are abstractions (universals or concepts)
e values are timeless and have no lifecycle

¢ values have no alterable state and can only be inter-
preted, but not changed

e values are referentially transparent and prevent side-
effects when used on different parts of systems.

Following the evidence given by many practitioners® it
significantly improves object systems when values are
modeled as Value Objects and used with value seman-
tics wherever applicable instead of modeling them as
mutable stateful objects. There are even comprehen-
sive compilations* of Value Objects and other functional
modeling patterns in object systems.

However, despite a wealth of research and practice
in the last 25 years,” the support of Value Objects
and value semantics in object-oriented programming
languages is still limited to some arbitrary simple cases.
The implementation of more specific or more complex
Value Objects is still up to each designer and depends
on the specific situation, particularly the underlying
language.

Here, we present a simple object model and
lightweight Smalltalk implementation to build more
complex Value Objects®. We draw upon our observa-
tion that any data coming from and going to a sys-
tem eventually are simple literal values like numbers or
strings. Therefore it is always possible to print them.

2In functional programming languages values are the only data
option, which turns out to be very beneficial in design situations,
where absolute reliability is required when lots of data are dis-
tributed around and shared.

3see [Biaumer98] for an example
4see [Kiihne99)
5 [Riehle06] gives an example of such continuing effort.

61In the following we use the capitalized ‘Value’ interchangeably
with ‘Value Object’ to indicate the object model; in contrast we
use the lowercase ‘value’ for the common meaning of the word.



So, a Value is created by a constructor which takes the
values of all its instance variables as parameters. Val-
ues can print themselves in this constructor format, so
that the full definition of the Value is executable and
visible at a glance. Since Values are context free and fi-
nite, they can always be written as code in a workspace
or a (testing) method. Values should naturally never
change after creation and do not provide any setters for
instance variables.

In section 2 we show some examples and give an
overview of the core elements of our implementation.
We show a pragmatic way to support Values with a
simple generation framework.

Section 3 introduces interface layers, shows how you
can explore your domains by modeling them with Val-
ues and gives an overview of the applications of Values,
which made our Smalltalk systems more reliable and
easier to maintain and to test.

In section 4 we address object serialization which
is trivial for Values and meta descriptions which we
noticed have something in common with our work.

In section 5 we summarize our implementation and
shortly discuss pros and cons whereas in section 6 we
suggest more enhancements.

— but, let’s get to work —

2. Complex Value Objects in Smalltalk
2.1 Values by Example

<FEzamples are an important part of the descrip-
tion of a programming language and environment.
Many of the examples used in this book are taken
from the classes found in the standard Smalltalk-
80 system.> [Goldberg83, p. 10]

Native Smalltalk Values. There are many Values
already available in a standard Smalltalk system.

Immediate Objects. Objects like SmallInteger and
Character are represented by the object pointer di-
rectly instead of pointing to a location holding the ob-
ject. We consider them Values because they are handled
with perfect value semantics.

So for instance a number like 42 exists as 42 in 4
bytes (including a few bits to specify that the bytes
should be interpreted as Smalllnteger).

Immediate objects cannot be distinguished (it does
not make sense to ask, which instance of 42 is used).
It is not possible to change 42, since immediate objects
are atomic and do not have internal structure.

When 42 is printed, it will produce a string ’42°.
This string is understood by the compiler to translate it
into the Smalllnteger 42. Immediate objects are literal:
the compiler will recreate the object from its printed
representation so we can use them in source code.

6

Literal Objects. Other objects are immutable and have
a literal representation, which makes them good Values:

e nil, true, false

e Numbers

® String, Symbol

¢ (literal) Array, ByteArray

¢ LiteralBindingReference (only VisualWorks).

String and Array can also become mutable in which
case they are not Values, but ordinary objects.
Instances of real Values can not be distinguished,
ideally referring to one single instance. This is true for
nil, true, false and Symbols. Whereas Values like
String or Array create equal, but not identical copies.

Value-like Objects. Many more Smalltalk objects are
conceptually Values and are often handled with value
semantics although they are modeled like conventional
objects in the library:

® Date, Time, Timestamp
® Point, Rectangle, Association

® ColorValue.

These objects are composed of other objects or Values.
Customarily, operations with these objects will return
a copy and do not modify the instance. But they have
setter methods for their instance variables so that at-
tributes can be changed individually from the outside.

Objects like Association may refer to arbitrary
objects, not just Values. Only Association objects
containing Values are Values themselves, otherwise they
are conventional objects. The same applies to Array and
Dictionary objects.

Only some of them are literal and can be written in
source code directly, like Point (1 @ 2) or Association
(#a -> 42). This is achieved not by special syntax rec-
ognized by the compiler, but by using ordinary binary
operators to create them. Others can be created sending
messages like Rectangle (1 @ 2 extend: 10 @ 5).

Often constructors are used to create a Value like:

Date
newDay: day
monthNumber: monthIndex
year: year

Complex Value Objects. This paper is about com-
plex Values. They are created by constructors, contain
only Values and are immutable and literal.

A simple example for a Value is the login data for a
user account:

User
name:
password:

’guest’
’guest’.



8

10

12

14

24

26

28

30

32

34

36

38

40

42

44

46

48

We can describe a Store connection using another Value:

PostgreSQL
id: #publicCincom
dbId: #psql_public_cst_2007
environment: ’store.cincom...’
user: (User
name: ’guest’
password: ’guest’).

Other Values can reference the Store connection:

Package
name: ’DateField’
storeld: #publicCincom.

A Value can contain lists of other Values:

Bug
description: ’slow...’
urgency: #high
changes: (Array
with: (IssueEntered
who: #Christian
when: (Date d: 15 m: 2 y: 2007))
with: (IssueEstimated
who: #Christian
when: (Date d: 15 m: 2 y: 2007)
hours: 3)
with: (IssueVersionAssigned
who: #Christian
when: (Date d: 15 m: 2 y: 2007)
version: (Version major: 2 minor: 9))
with: (IssueVersionAssigned
who: #Christian
when: (Date d: 8 m: 8 y: 2007)
version: (Version major: 3))).

Or it can consist of other more or less complex Values:

Charttext
style: (Textstyle
font: #{SmallCharts.Helvetica}
size: 12
color: (CmykColor
name: ’BN_Blau’
cyan: 1
magenta: 0.3
yellow: O
black: 0.3))
string: ’This is a String’
position: 5 @ 10

All Values presented here can print themselves in
such an indented format, so that the structure and all
details are visible at a glance.

2.2 The Elements of Values

<Objects: A computer language should support
the concept of “object” and provide a wuni-
form means for referring to the objects in its
universe.> [Ingalls81, 5th principle]

Values (with a capital ‘V’) are real objects.

A Value is fully specified by its class and the defini-
tion of its content. In general, we define Values as im-
mutable composites that can hold other Values in their
instance variables. We define a different class for each
kind of Value giving it unique behavior.

As we saw in section 2.1 before, we can also directly
use some native atomic standard Smalltalk objects as
Values. See the next section 2.3, how we convert such
Values into a form consistent with our Values model.

We distinguish between three functionally different
types of instance variables regular objects can have:

e constant — The content of a constant instance vari-
able is initialized once and cannot change.

e variable — Variable instance variables can freely be
assigned from external via setters.

e cache — Cache instance variables initialize lazy on
first access. Their content is never modified exter-
nally. They can be cleared.

In contrast Values have attributes, which are always
stored in constant instance variables, which can only
be initialized with Values. All attributes are initialized
at once when the Value is created and can not change
afterwards. Values are immutable.

A Value Object satisfies the following criteria:

e attributes contain only Values
e attributes cannot change
e Values should not be distinguished

* Values have a literal representation.”

Values of a specific class containing the very same
contents should not be distinguished. Therefore, we
define equality (Value>>=) as the identity of the class
and the equality of all attributes.

Values are regular objects — just simpler. By disal-
lowing modifications after creation, we deliberately con-
strain the full power and flexibility of objects. Systems
are complex because of changing state. The state of a
regular object depends on its history. By rejecting mod-
ifications, Values become trivial objects.

Still, Values are regular objects. We arrange them in
arbitrary class hierarchies below a root class Value and
enrich them with functions and utility methods, just like
any object. Also on the class® side, any additions like
class variables and extensions are possible and common
throughout our systems.

Tree-Structure. Complex Values can be seen as top-
down trees of Values (composites). Since Values can

7 A literal representation is not a strict requirement for Values,
but this useful property is half the point.

8 The class of a Value is no Value itself.



50

52

only contain Values and can be created only with con-
structors taking all arguments at once, it is not possi-
ble to create recursive or cyclic structures. Values are
always concrete, finite and complete.

Attributes in Detail. Attributes can be either a
single Value or a collection of Values, which only contain
Values as elements. We use Array and Dictionary for
our implementation.

We distinguish four different kinds of attributes:

e constant attributes hold a Value of a specified class
or nil — The attribute is required and must be
present in all constructors. The class of the attribute
is not checked in the current implementation. The
class information is only used to add a comment to
the accessor and to generate an example.

e optional attributes are constant attributes with a
default (see below)

e sequence attributes specify an Array — The elements
of the sequence must be Values, but their class is
not specified. There are no runtime checks for type
compliance as well. Sequence attributes are always
optional and default to an empty array #().

® map attributes specify a Dictionary” — Like a se-
quence, the Dictionary must only contain Values
(as keys and as values), but no classes are specified
nor are checks performed. It defaults to an empty
Dictionary new. We prefer an OrderedDictionary
to make it better reproducible and to support test-
ing.

Defaults. Attributes can either be a Value or nil.
Often it is useful to have optional attributes, which
provide a default Value when it is not explicitly set. This
increases the expressive power and allows for modeling
simple domain constraints with mandatory and optional
attributes.

The dependencies between default attributes can be
complex. For example Time: when only hours are given,
minutes and seconds can default to 0. But when hours
and seconds are specified, minutes have to be specified
as well.

Since optional attributes can be omitted when creat-
ing a Value, there must be a constructor without that
attribute. A Value class with several optional attributes
needs constructors for all combinations.

The example

<constant: #id class: #{Symboll}>

<optional: #maybe class: #{Symbol}
default: ’#sure’>

<sequence: #list>

54

56

58

60

generates the full constructor
#id:maybe:list:

and the optional constructors
#id:maybe:

#id:1list:
#id:

Literal Values. Values should have a literal repre-
sentation from which they an be created so they can
be literally written into source code. A Value should be
able to print itself in that form. This is similar to the
self-evaluation property of objects in Squeak.

Many objects in standard Smalltalk have this prop-
erty; immediate and immutable objects (Number, Char-
acter, String, literal Array, Point etc.) print themselves
as source code. This is supported either by the Smalltalk
syntax recognized by the compiler or through binary
operators or message sends.

The Value class defines the method asSource, which
creates a string with the constructor expression and all
arguments. This expression can be evaluated to recreate
the Value or used in a method to return the Value.
We take extra care to produce nicely formatted source
strings with proper indentation to clearly show the
structure of the nested Values.

The standard Smalltalk method Object>>storeOn:
also produces source code strings of arbitrary objects,
but uses instvarAt:put: to set the attributes instead
of printing meaningful constructors.

Limitation: References. Values are simple and con-
text free. They are not as expressive as conventional
objects. While those can (and often do) form a web
of directed references with recursions and cycles, Val-
ues can not. In order to use references, these have to be
modeled explicitly. It is often possible to use symbols or
ids to refer to another object. This requires additional
infrastructure and leads to higher complexity.

2.3 The Creation of Values
< Give away your best ideas.> [Gerald M. Weinberg]

A Value is fully specified by its class and the defini-
tion of its attributes. We specify the attributes in the
class side method #localSpecification using prag-
mas:

<constant: aSymbol class: aClassRef>

<optional: aSymbol class: aClassRef
default: aString>

<sequence: aSymbol>

<map: aSymbol>

For example, the Value class definition:

9 Map attributes with the same contents but different order should 62 Example class>>localSpecification

not result in different Values.

<constant name: #id class: #{Symbol}>



64

66

68

70

72

<optional: #active class: #{Boolean}
default: ’true’)>

<sequence: #items>

<map: #properties>

allows Values like:

Example
id: #Me
active: false
items: #(3 #b ’c’)
properties: (Dictionary
with: #key -> ’Value’)

The full specification is an ordered list of attribute
definitions.

All #localSpecification methods of all super-
classes in the Value hierarchy are combined to get the
attribute definitions in hierarchy order. The ordering
is reflected by the order of the instance variables. At-
tributes can be redefined in subclasses. The class or type
may change, but the order of attributes does not.

Code Generation. From the specification of a Value
class, we generate all necessary support methods,
namely constructors, initializer, accessors, the printer
and an example.

We first check whether the attribute classes are Value
classes. If so, the following is generated:

e the class definition with ordered instance variables

e one full constructor, which takes arguments for all
attributes

® 2" — 2 optional constructors '° for all default at-
tributes n — For each default attributes, we provide
an own constructor leaving out that attribute.

e one initializer, which sets all instance constants at
once when it is called by the constructors — Besides
the accessors, this is the only method accessing the
instance constants directly. This is safe, because all
attributes are set at once. There is no proper way to
alter the values of attributes separately.

e one accessor'! for each instance constant — Except
for constant, all other attribute types provide a
default Value. The class of the attribute is inserted
as method comment.

e one print method, which produces a formatted source
string containing a constructor — Default attributes
are omitted unless they are set to a Value.

10 This is unfortunate, but Smalltalk does not support optional
arguments.

11 Accessors are the best place for comments and explanations
since you trip over them when debugging

74

76

78

80

82

84

¢ one class method #example containing the source of
a generated example'? using the full constructor —
Since all Values have an example, it is always possible
to generate an example for a complex Value, but
usually we adapt this later on to provide a good
general purpose example to be used in unit tests.

Convert Standard Classes to Value Classes. If
objects of an existing class only hold Values in its
instance variables, the object can be extended to behave
like a Value. We therefore provide constructors and a
print method, which uses them.

Look at the class Time as an example. Time objects
are usually constructed by #fromSeconds: or by send-
ing #now to the class. Time objects print themselves
according to the local setting.

We created an additional constructor:

Time class>>h: hours m: minutes s: seconds
~(self new hours: hour
minutes: minute

seconds: second) beImmutable
And the print method:

Time>>asSource
“self class name asString,

> h: ’, self hours printString,
> m: ’, self minutes printString,
> s: 7, self seconds printString

which produces °’(Time h: 22 m: 15 s: 0)’ when
sent to a time object holding 10:15 pm. This can be
evaluated to reproduce a copy of the original object.
To recognize a class as Value class outside the Value
hierarchy, we provide the method 1literalExample

Time class>>literalExample
“self h: 14 m: 36 s: 29

All classes implementing literalExample are ac-
cepted as Value classes and can be used in attribute
specifications.

2.4 Implementation

As programming with Values is basically a program-
ming style with certain conventions, we implemented a
certain generation support, which takes care of tedious
tasks, like writing constructors and accessors, and we
built elaborate printing support into the Values system.

Our implementation is not yet mature. It grew out of
laziness to avoid writing all the trivial methods by hand.
Although the generator approach is not perfect and
editing is sometimes necessary, it has helped making
use of Values a lot.

The generator takes special care of redefining Values.
In most cases, it will change or remove methods affected

12 For interactive programming and testing, we always like to have
live example objects available.



by a change. Ideally, one need only to work with the
specification of the Value — the generator takes care of
the rest.

We wanted to have as much functionality as possible
implemented as a generic framework with a root class
Value offering all its capabilities to subclasses. While
equality and other services are implemented generally
in class Value, some infrastructure has to be generated
for each individual Value class: constructors, initializer,
accessors, printer and example.

The design of the Value support was guided by the
distinction between runtime and development. During
development, Value classes are defined and the support
methods generated. In the runtime it is only necessary
to create and use Values. Therefore, the constructors,
initializer, accessors and printer are packaged in the
runtime while the specification and example are only
needed in development.

The printer is the only method generated, which
could be implemented generically, if the specification
would be available at runtime.

Currently, the specification is implemented using
pragmas, which have to be assembled from the hierarchy
in order to be used for the code generation. This is slow
compared to direct object access. This is not important
in the current implementation, since the specification is
used only once for generation.

The pragma-based implementation is probably inad-
equate when the specification is used all the time for
printing or type checking on creation (see section 6).

Limits of our Implementation. There are few lim-
its imposed by Smalltalk to our implementation.

The number of (Smalltalk) literals per method is
limited. This restricts the size of a Value to be stored in
a method. VisualWorks recently raised that limit from
256 to 16.777.216.

The length of a method selector is limited. This puts
a limit'® on the number of attributes, which can be
specified in one Value class, because the initializer and
the constructors easily can reach a greater length.

Interestingly, in VisualWorks'? this limitation comes
from two different sides. First from the compiler, which
compiles such a method but crashes the image when the
method is called. The other limit is from Store, which
simply disconnects with an error when the selector is
too long.

3. Using Values in System Design

< There really is nothing definitive to say about the
“right way” to choose objects.> [Goldberg83, p. 8]

13 The number of possible attributes also depends on the size of
their names.

™ The two limits are different with the Store limit being lower.

86

88

90

The introduction of Values to our systems had the
effect that large parts of the software could be trivialized
thus reducing complexity.

Values conceptually are not well suited for database
applications where objects are often changed, nor for
the user interface layer where users directly interact
with objects.

Here, we show examples where we could apply Val-
ues beneficially: modeling interface layers with Val-
ues, testing systems, configuring with Values and using
Smalltalk as Value database.

3.1 Interfaces

Values are perfectly suited for interfaces between the
system and its environment. By introducing interface
layers we can represent any incoming and outgoing
data as Values. Data processing would then consist of
mapping some Values to some other Values.

Value interfaces are very useful for modular testing.
Each side of the interface can be tested separately
without the need for the other side to be present.

The entities of a system modeled as Values can
be serialized easily, since they do not contain cyclic
references. Nor must we be afraid of side effects when
we consistently treat data as Values.

Request — Response. External interfaces are ei-
ther for clients outgoing calls (or requests) and incom-
ing results (or responses) or for server incoming requests
and outgoing responses.

No matter, in what form the data are exchanged with
the outside, there will never be Smalltalk objects but
always simple values like strings or numbers in some
structure. Since all external data are values, it is simple
to define specialized Value Objects to model a request
and a response thereby adapting the raw data to the
model to make it usable.

Example for a Client Call. Market data of shares
can be retrieved from financial news agencies, like
Bloomberg. To request the name and the last price for
Google shares from Bloomberg, you call:

bloomberg
dataFor: #(’GO0G US Equity’)
fields: #(#NAME #PX_LAST)

where bloomberg is a provider object doing the com-
munication. The result looks like:

#(#(°GOOGLE INC-CL A’ 414.06)).
For the Value interface we define a new Value class:

Request class>>localSpecification
<sequence: #securities>
<sequence: #fields>

so that we could write:



92

94

96

98

100

102

104

106

108

110

Request
securities: #(’GO0G US Equity’)
fields: #(#NAME #PX_LAST)

If we carefully chose meaningful names for the Value

class and possibly unnamed parameters of the interface,

the code can become expressive and understandable.
To connect the Value to the interface we define:

Request>>sendTo: aProvider

~“aProvider
dataFor: self securities
fields: self fields

To get the result array we can write:
aRequest sendTo: bloomberg

For the response we define another Value class, which
holds the request and the returned data:

RequestedData class>>localSpecification
<constant: #request class: #{Requestl}>

<sequence: #data>
The request-response Value now looks like this:
RequestedData
request: (Request
securities: #(°GO0OG US Equity’)
fields: #(#NAME #PX_LAST))

data: #(#(’GOOGLE INC-CL A’ 414.06))

To create a RequestedData, we add a method to
Request:

Request>>dataFrom: aProvider
“RequestedData
request: self
data: (self sendTo: aProvider)

The RequestedData Value has all data from the
request-response exchange in a context free form.

Values can be stored and used for various purposes
like logging, capture/replay and can be easily mapped
or transformed. But most important to us were the
enhancements of testability.

Test Interfaces. A great deal of our enthusiasm
about Values comes from the fact that our systems be-
came nicely testable once we introduced Values. This
was our original motivation for the Values idea.

Value interfaces should be defined just for the sake
of system maintenance and testability. They influence
several aspects of developing software:

System Testing. To test an external interface, you cre-
ate a RequestedData Value, get hold of a provider ob-
ject and send the request. The response can then be
compared to the expected data.'® Often, these inter-
faces are simple and generic, so that testing is of limited

15 This may not be trivial when time based data are involved

value, since bugs would be simple and would occur with
the first workspace tests.

Testing the other direction is more useful. Crafted or
generic RequestedData Values could be defined and fed
into the system without the need to be online connected
to a provider.

Error Reproduction. It is common practice to print
out system stacks at client sites on system failures and
log them or send them in as error reports. Unfortu-
nately, stack printouts do not suffice for reproducing
data related problems as they cannot reliably commu-
nicate data values. It is error prone to reproduce data
from error logs by analyzing stack printouts.

To handle data related software problems, we use
Values as a representation of online data at client sites.
As Values can accurately print themselves, they can
be transferred in error reports from client systems to
a test system in order to reproduce data workflows in a
reliable way.

Data Driven Testing. Directly generating test objects
is hard to maintain and impractical for deeply refer-
enced objects. Test data generation should in general
be separated from test case execution, but external data
sources like spreadsheets either fail to provide complex
test objects (and are also bulky to use) or are too far
away from the test code to be useful for programmers.
Values provide an easy maintainable way to create test
objects to be used with generic test cases.

Module Interfaces. Just as external interfaces are
beneficially modeled with Values, introducing internal
Value interfaces is good for the separation and decou-
pling of internal subsystems.

The design of Value interfaces can be a challenge,
because only context free Values can be exchanged. Of-
ten omniscient objects, which provide access to other
objects, are passed through the system. It is not pos-
sible to transfer such objects through Value interfaces.
Rather, the essential basic data has to be identified and
modeled as Values.

This is advisable for distributed systems, since send-
ing references between systems is difficult to maintain
and often too slow. Values can be used directly with
Opentalk Smalltalk-to-Smalltalk connections, since Val-
ues always transmit themselves by value, not by refer-
ence. Therefore, interfaces modeled as Values can be
turned into remote Opentalk interfaces very easily.

Redesign for Values. In order to introduce Values
in existing systems to profit from the benefits, some
redesign might be necessary.

Consider a server getting requests and creating re-
sponses. As soon as a complete request is received, a
Value can be created with all that data. The process-
ing and response generation would use that Value. In



112

114

116

118

120

the end, a response Value is created with all containing
data including the request. The response Value then
sends itself over the connection.

This approach differs from other patterns. Often, a
response object is created as soon as the request was
received. During request processing, the response object
is filled with the appropriate data. In the end, the
response is complete and sent (with streaming, sending
starts before the response is complete).

With Values this is not possible, since they can only
be created with all attributes at once. This may lead
to a redesign where the construction of a response is
broken down to separate computations. This kind of
redesign can be healthy as dependencies are cleared up.

Interface Design. All external interfaces are Value-
friendly because, in the end, they consist only of struc-
ture and primitive data, which can be used for Val-
ues. For our interfaces it has been beneficial to model
the Values as close to the external representation as
possible. For example if a time stamp comes in as
?2009-06-01 12:09:03”, this string is kept in a Value
and no pre-processing or conversion is done. Decoding
this data is much better done by the Value itself.

For prototyping it is recommended to create a com-
prehensive interfacing Value with all external data avail-
able, whether you need them now or not. Often, we use
the API documentation directly and edit it to define the
Value specification. When the interface settles, unnec-
essary attributes can be removed and the Value class
can be regenerated.

3.2 Configurations

Many systems use configurations or specifications to de-
fine the setup of a module or subsystem. Configurations
may be used by the programmer internally like defining
a user interface window with a #windowSpec or to setup
an Opentalk connection.

Other configurations must be changed by the user
or an installation procedure. They often come in the
form of INI- or XML-files. Examples are the setup for
database connections like Store and other settings in
the VisualWorks settings tool, which can be saved as
XML.

Values, especially those defined in some class meth-
ods are a good representation of configuration settings.
A Store connection for example can be defined like:

Store class>>publicCincom
<store>
“PostgreSQL
id: #publicCincom
dbId: #psql_public_cst_2007

environment: ’store.cincom...’
user: (User
name: ’guest’

password: ’guest’).

122

124

126

Store class>>system
<store>
“Access ...

Store class>>smallCharts

Store class>>private

These Store Values contain all necessary data to define
the Store settings in the VisualWorks settings tool. And,
since the Values live in methods, the are managed by
the regular Smalltalk tools.

All benefits of having Values in code are available:

e directly accessible for testing or in workspaces
e selectors and classes can be referenced

e the structure and details are presented in an easily
readable way

e the source code is version managed

e other Smalltalk tools like syntax highlighting and
completion are available.

While external configurations are often stored in INI-
or XML-files, users should not edit them. We find it
more user friendly to offer an editor and use external
files only for the transfer to other images.

If the transfer is the only purpose for the external
files, it would be easier to have Values in methods. Then
the configuration would be part of the source code and
could easily be shared between images with the regular
mechanisms like Store or parcels.

3.3 Explorative Programming

Early design studies'® can be done using specific exem-

plars of core entities of a new domain.

For explorative programming and prototypical engi-
neering, Values are very useful. Like with testing soft-
ware, exploring a new domain is best done by playing
with it. Different modeling approaches should be tried
with a prototypical implementation. The model must
be lightweight and easy to change. When defining a new
model class, it is always useful to have real instances at
hand for debugging and testing.

The model instances should not be meaningless ex-
amples or dummies, rather they should be real instances
as they appear in the normal system. For modeling it
is often sufficient to have a handful of instances of each
model class to implement and test the logic. If the do-
main only has few instances, it can be modeled com-
pletely with instances defined in code.

16 [Beck07] recently set a good example. Also, read [Ténne07] for
an interesting adaptation of the idea for the rest of the world.



128

130

132

134

136

138

140

142

144

146

148

150

152

154

This approach suggests using Values for the model.
Values can always be represented by code and so, meth-
ods can be defined, which return (an instance of) a
Value. These methods are usually unary class methods
of the Value class.

That way the Smalltalk environment can serve as a
nice lightweight (embedded!) database for Values.

Experiences with a Real Example. Some weeks
before the european soccer championship EURO2008,
Christian started a project'” for his friends to bet on
the scores. One motivation was to start working with
Seaside and Glorp. The modeling was done with Values.

In the tournament games are played between teams
in stadiums at certain times. We define

Team class>>localSpecification
<constant: #name class: #{String}>
<constant: #kiirzel class: #{Stringl}>

and defined all 16 teams as methods:

Team class>>esp

“self name: ’Spanien’ kiirzel: ’ESP’
... (14 more)
Team class>>sui

“self name: ’Schweiz’ kiirzel: ’SUI’

Now we can access for example the Swiss team simply
by writing Team sui.

The games where fought in eight different stadiums:
Stadion class>>localSpecification

<constant: #name class: #{String}>

<constant: #stadt class: #{Stringl}>
<constant: #land class: #{String}>

Stadion class>>basel

“self name: ’St. Jakob-Park’
stadt: ’Basel’
land: ’Schweiz’
... (6 more)

Stadion class>>bern
“self name: ’Stade de Suisse’
stadt: ’Bern’
land: ’Schweiz’

Now we can define games:

Spiel class>>localSpecification

<constant: #nummer class: #{Integer}>
<constant: #runde class: #{Integerl}>
<constant: #teaml class: #{Team}>
<constant: #team2 class: #{Team}>
<constant: #anstoss class: #{Timestampl}>
<constant: #stadion class: #{Stadion}>
<constant: #ergebnis class: #{Point}>

17 We like to model the domain in the user language, so the models
in this example are named in German.

156

158

160

162

164

166

168

170

172

174

176

178

180

182

184

186

188

190

192

194

196

Spiel class>>spielOl

“self
nummer: 1
runde: 1
teaml: Team sui
team2: Team cze
anstoss:

(Timestamp d: 7 m: 6 y: 2008 h: 18)
stadion: Stadion basel
ergebnis: 0 @ 1

... (22 more group games)

Spiel class>>spiel24

“self
nummer: 24
runde: 3
teaml: Team rus
team2: Team swe
anstoss:
(Timestamp d: 18 m: 6 y: 2008
h: 20 m: 45)

stadion: Stadion innsbruck
ergebnis: nil

The finals are interesting, since the teams are not de-
termined in the beginning:

Spiel class>>spiel2b
“self
nummer:
runde: 4
teaml: Gruppe a sieger
team2: Gruppe b zweiter

25

anstoss:
(Timestamp d: 19 m: 6 y: 2008
h: 20 m: 45)

stadion: Stadion basel
ergebnis: nil

The teams are determined by the ranking in the quali-
fying group. A group is defined as:

Gruppe class>>localSpecification
<constant: #nummer type: #{Integerl}>
<sequence: #teams>

Gruppe class>>a

“self

nummer: 1

teams: (Array
with: Team por
with: Team sui
with: Team cze
with: Team tur)

... (3 more)

which allows for the ranking table to be computed.
In the final the teams are defined by the result of the
semifinals (spiel29 and spiel30).



198

200

202

204

206

208

210

212

214

216

218

spiel3l
“self
nummer: 31
runde: 6
teaml: self spiel29 sieger
team2: self spiel30 sieger
anstoss:
(Timestamp d: 29 m: 6 y: 2008
h: 20 m: 45)
stadion: Stadion wien
ergebnis: nil

These Value classes implement most of the domain
model including all their concrete instances. Two former
prototypical Values (Tipper and Tipp) were changed
to database objects described by Glorp. One Value
(Gruppentabelle) was changed to an object since it
needed a cache for the computed result table. The rest
(20 classes) was related to the Seaside user interface.

During the tournament, after a game, it was neces-
sary to log into the Seaside server and change the code
of the relevant game method to add the result. After a
reset to flush the caches, the next request would use the
new result.

Another motivation in the project was to try Glorp.
This was a mistake for such a small application. While
Glorp eases some of the burden of having to deal with
a relational database, it is still too cumbersome and
requires special attention even with only two tables.

It would have been much simpler to have Tipper (ac-
count details for a user) and Tipp (the bet on one game)
as Values in class methods. Since these objects are dy-
namic and created by the user, they have to be auto-
matically recorded and stored. This can be done with
a simple method generator, which creates an instance
method returning the Value:

Tipp>>addAsMethod
self class class compile: self selector, ’
<tipp>
=, self asSource

Tipp>>selector
A’tipp’,
self spiel number printString,
self tipper name

resulting in:

Tipp class>>tipp21Christian
<tipp>
“self tipperId: 3 spiel: 21 tore: 2
gegentore: 1

The tips can be accessed using the pragma <tipp>.
The compiled definition is available immediately and
is recorded in the changes file. For simple applications,
this is a basic, fast and reliable database for Values.

3.4 Other Applications

Values are a good bet for objects which only hold
simple elements and which are not supposed to change
after creation. Using Values allows several services like
logging and replaying to be implemented easily.

Actions and Commands. More complex user inter-
faces implement user commands as objects, instead of
just methods, to allow undoing, recording and scripting
(see the Command design pattern). Commands should
be modeled as Values: once created and executed, they
should never change. Commands should also be con-
text free, since they are used in different situations
(redo, replay, etc.). Using Values to implement com-
mands clearly separates creation and execution. The
creation of a command Value requires all parameters
to be present as concrete, context free Values. The ex-
ecution context of the command in contrast is not re-
stricted and might involve stateful objects like windows
or sessions as executor or execution parameters.

The separation of creation from execution is benefi-
cial for the system design, because it decouples responsi-
bilities. While the creation of commands is usually done
in the user interface (which can be seen as a mere ed-
itor for commands), the execution is independent and
can be triggered by commands from any source (user
interface or script).

Examples from Smalltalk are changes and refactor-
ings. Changes record all elementary changes to the sys-
tem in the .cha file for error recovery while refactorings
are commands allowing complex changes of classes and
methods.'® Although changes and refactorings are con-
text free command objects as described above, they are
not implemented that way. Both implement setters for
instance variables (like className:). This is not inten-
tion revealing, since setters should not be called on ex-
isting changes or refactorings. They rather should only
be used for instance creation.

Announcements and Events. Introducing an-
nouncements to Smalltalk has been a great improve-
ment, since it allows dependent systems to exchange
events with real objects instead of just symbols. How-
ever, there are no restrictions for the objects carried by
announcements. Announcements could be used as Val-
ues, i.e. allowing only Values in instance variables, to
help decouple system layers from each other (user in-
terface from domain layer or domain from persistence
layer). Note that announcements with real objects are
also very useful inside layers, like announcements con-
taining widgets in the user interface layer.

Events coming in from the operating system are
necessarily Values, since they can only contain sim-
ple values, no objects with references, and should not

18 The concepts overlap and may get unified in the future.



be changed. But, similar to changes and refactorings,
events often are implemented as ordinary objects with
setters for instance variables which should not change
after creation.

4. Related Work

Object Serialization. Object serialization'? is used
to exchange objects between Smalltalk images and even
between Smalltalk dialects 2°. The core feature is that
references between objects in the serialized object net
are preserved. For Values this is not necessary, since
Values do not have any references. Therefore, Values
implement serialization by using their literal represen-
tation (i.e. as source code).

Meta Descriptions. The attributes of Values are
specified using a simple description language (pragma
declarations). The parameters in the attribute specifi-
cation are important for the purpose of defining Values.

There are other attribute description frameworks for
other purposes. Some appliances?! can generically spec-
ify user interfaces. Very popular is the mapping of ob-
jects to database tables where attributes are described
with all relevant, sometimes complex properties (like in
Glorp).

5. Conclusions

Our approach combines three aspects: Values, literals
and defaults. Each aspect has been discussed separately
before, but the combination of these features allows for
a useful extension of object systems.

We found that a strong distinction between regular,
changeable objects and immutable Values can lead to
more transparent system designs.

Ideally, fewer conventional objects will do the work
and need most of the attention during system design.
That parts of a system consisting of trivial Values will
hardly need any attention other than initial modeling.

Values are literal, presenting their full structure and
all details in one expression. Reading a constructor call
in code is sufficient to understand the role of the Value
— a deeper look is not necessary, since it is trivial.

Value interfaces isolate modules from each other,
since only Values can be exchanged. The transmission
of regular stateful objects whose state can change is
not possible. Regular objects can only exist inside of
modules and cannot leave them. From the outside, only
Values can be accessed with the interface of a module.

Our implementation basically provides a code gen-
erator and a pretty printer and is simple but useful.

19 as in VisualWorks BOSS

20 a5 SRP or SIXX

21 see the Magritte framework in [Renggli06] as a useful example

for Web development

220

Creating and changing Value definitions is almost as
easy as it should be. Most repetetive chores have been
eliminated making it possible to concentrate solely on
the modeling aspects.

Values are good for certain modeling situations, but
not for all. Database objects allowing changes to at-
tributes conceptually are conventional objects. Read-
only database objects could be modeled as Values if
they contain nothing but Values. User interface objects
allowing the direct manipulation by the user should be
implemented as conventional objects. But module in-
terfaces between the user interface and the domain can
be usefully implemented using Values.

The performance of our systems has never been a big
issue regarding our use of Values. Many methods are
used as method Values, which are often executed. Each
time a new Value instance is created and returned. This
can be slow in tight loops, but is usually not noticeable.
Therefore, we develop without any consideration for
performance and do not cache any Values. If the system
shows performance problems, it is often easy to add
caches to some Value classes — with the drawback of
introducing state, which needs to be managed.

6. Outlook

While we used Values very beneficially in our systems
for many years, some changes and enhancements are
desirable.

Well Known Values. Some Value classes have well
known instances. For some colors for example it is
awkward to write them as

(ColorValue r: 0 g: O b: 0)
(ColorValue r: 1 g: 1 b: 1)
These special Values should appear literally
and print themselves as ColorValue black and

ColorValue white. Other examples are: Point zero,
Time noon.

This could be implemented using a class registry and
changes to the printer to use it.

Reflection. We implemented the definition of a
Value using pragmas. To create the full specifica-
tion, all attribute definition pragmas of the class and
its superclasses are collected from the class method
#localSpecification.

Our implementation is slow, but sufficient for gener-
ating code. To allow for reflection about the specifica-
tion at runtime, for example for the printer, it must be
implemented differently.

We assemble the full specification in two steps:

1. We get the attribute definition lists from each class
in the inheritance chain.



2. We combine them into one attribute definition list
respecting redefinitions.

We currently use pragmas for the first step cre-
ating attribute definition Values®? from them. But
we could store the definition Values directly in the
#localSpecification method. The second step would
still be necessary to assemble the full specification.

Changing this could also lift the restrictions imposed
by using pragmas. The arguments of pragma messages
can only be literal. No message sends are allowed. This
is why the defaults are specified as source strings. Using
real Values in the #localSpecification method would
allow the use of Values for the defaults.

It would also be possible to cache the full specifica-
tion in a class instance variable. This cache must be
cleared when a superclass specification has changed.

Type checking. We write the names of the classes
specified for constant and optional attributes as com-
ment in the accessor and use them for example creation.
No type checking is performed. Although we normally
do very well without static types, in the case of Values
that might be disputable.

Implementing type checking is fairly simple, since it
needs to be done only on instance creation. Fortunately,
there is only one method changing instance variables:
the initializer. It could be changed to accomodate the
checks either generically with reflection or directly gen-
erated into the initializer.

For sequence and map attributes, the class of the
elements could be specified. Special ValueArray and
ValueDictionary classes could ensure that only Values
of specific classes are contained.

Specifying the arrity of sequence attributes may be
considered, since it is valuable model information.

Object Attributes. In Smalltalk, instance variables
are defined with a string containing names. For the
definition of Values, we use instance variables for the
attributes and enrich them with meta-information like
type and class.

It would be nice if Smalltalk had instance vari-
able definition objects*® (or Values). The default
AttributeDefinition would just contain the name.
Subclasses could then implement other instance vari-
able semantics and constraints.

Caching Method Values. In systems using Values,
there can be many methods, which create and always
return the same constant Value. #example and typical
configuration Values are examples for these methods.
Standard literal objects in Smalltalk code are stored
in compiled methods. It should be possible to extend the

22 Attribute definitions were the first Value classes we defined for
implementing Values.

23 as discussed in [Griggs07-2]

222

224

226

Smalltalk compiler for Value classes. Constant method
Values could be compiled to lazily remember the return
value on first invocation in the compiled method.

Pragmas like <constant> or <cache> could be used
to indicate the caching behavior. This is an elegant
caching solution for constant Values, because the cache
is automatically cleared when the method is recompiled.

A similar solution was proposed by Travis Griggs®*.
He implemented the method once to make blocks re-
member the result of their first evaluation.

If the Value specification was implemented with Val-
ues instead of pragmas, the specification method would
be such a constant method Value, which could be cached
this way. This efficient solution would recommend Val-
ues to be used for the specification.

Value Refactorings. Working with Values means
modeling. Value classes are defined and attributes are
added, changed or moved between Value classes.

While our code generator always takes a full specifi-
cation and computes all changes, it would be interesting
to define higher order refactorings to model even more
efficient. One pair of complementary refactorings would
be ExtractValue and InlineValue.

ExtractValue could take some attributes from a
Value to create a new Value class with them. The
attributes of the original Value are replaced with a
new attribute for the new Value. Accessors of the old
attributes are rerouted to the new Value. InlineValue
would do the opposite.

Tool Support. Programming with Values is mostly
editing Value specifications, the rest is done by the
generator. This could be supported by a Value definition
dialog and a Value specification editing tool in the
refactoring browser.

Inheritance Problem. In regular Smalltalk class hi-
erarchies, subclasses can add but not remove instance
variables. With Values, attributes can also change.

This leads to the following problem: If the super-
class specifies an attribute as default, constructors will
be generated without it. If a subclass re-declares the at-
tribute as constant, the defaulting constructors without
the attribute are still available in the subclass.

See for example how the following specification:

ValueA>>localSpecification

<constant: #a class: #{Integer}>
<optional: #b class: #{String}
default: ’String new’>

results in the two constructors

ValueA class>>a: alnteger b: bString
ValueA class>>a: alnteger

24 see [Griggs07-1]



228

230

232

If we define a subclass ValueB of ValueA which redefines
attribute #b:

ValueB>>localSpecification
<constant: #b class: #{Symbol}>

we get only one new constructor
ValueB class>>a: alnteger b: bSymbol

but the constructor #a: is still available to ValueB.

One could forbid redefinitions of defaulting super-
class attributes to constant ones in subclasses (redefin-
ing a constant attribute with a defaulting one is no
problem) or redefine the impossible constructors with
an error like this:

ValueB class>>a: alnteger
“self error: ’Attribute #b is missing.
Use #a:b: instead.’

The automatic generation of such guarding methods has
not been implemented.

References

[Baumer98] Dirk Béumer, Dirk Riehle, Wolf Siberski,
Carola Lilienthal, Daniel Megert, Karl-Heinz Sylla, Heinz
Zillighoven, Values in Object Systems.

Ubilab Technical Report 98.10.1, UBS AG, Ziirich, 1998,
http://www.riehle.org/computer-science/research/
1998/ubilab-tr-1998-10-1.html

[Beck07] Hans N. Beck, Ezploratives Modellieren, in OB-
JEKTspektrum, online edition ’Requirements Engi-
neering’, 2007, http://www.sigs.de/publications/os/
2007/RE/beck_0S_RE_07.pdf

[Goldberg83] Adele Goldberg, David Robson, Smalltalk-80:
The Language and its Implementation, Addison-Wesley,
1983, Free book at http://stephane.ducasse.free.fr/
FreeBooks/BlueBook/

[Griggs07-1] Travis Griggs, When You Come Back [on
caching values], in ‘Objology’ Weblog, 2007,
http://www.cincomsmalltalk.com/userblogs/travis

[Griggs07-2] Travis Griggs, Slots all the Way Down [on
object attributes], in ‘Objology’ Weblog, 2007,
http://www.cincomsmalltalk.com /userblogs/travis

[Ingalls81] Daniel H. H. Ingalls, Design Principles Behind
Smalltalk, BY TE Magazine, August 1981,
copy at http://www.cs.virginia.edu/~evans/cs655/
readings/smalltalk.html

[Kiithne99] Thomas Kiihne, A Functional Pattern System for
Object-Oriented Design, Ph.D. thesis, Darmstadt Univer-
sity of Technology, 1999, http://homepages.ecs.vuw.ac.
nz/~tk/fps/fps-sans-escher.pdf

[MacLennan82] Bruce J. MacLennan, Values and Objects in
Programming Laguages, Computer Science Department,
Naval Postgraduate School, Monterey, 1982,
ftp://ftp.cs.utk.edu/pub/maclennan/VOPL.pdf

[Renggli06] Lukas Renggli,

Magritte — Meta-Described Web Application Development.

Master thesis, Berne University, 2006,
http://scg.unibe.ch/archive/masters/Reng06a.pdf
[Riehle06] Dirk Riehle, Value Object [in Java..], in
‘More Design Patterns’ Weblog, 2006, http://wiki.

moredesignpatterns.com/space/Value+Object

[Tonne07] Andreas Tonne, Exploratory Modeling with SAP
NetWeaver, Cincom Systems, Inc., 2007,
http://www.cincomsmalltalk.com/cincomFiles/
digest2007/CS070214-1-A4.pdf


http://www.riehle.org/computer-science/research/1998/ubilab-tr-1998-10-1.html
http://www.riehle.org/computer-science/research/1998/ubilab-tr-1998-10-1.html
http://www.sigs.de/publications/os/2007/RE/beck_OS_RE_07.pdf
http://www.sigs.de/publications/os/2007/RE/beck_OS_RE_07.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/
http://www.cincomsmalltalk.com/userblogs/travis/blogView?showComments=true&printTitle=When_You_Come_Back&entry=3346567529
http://www.cincomsmalltalk.com/userblogs/travis/blogView?showComments=true&printTitle=Slots_all_the_Way_Down&entry=3373903413
http://www.cs.virginia.edu/~evans/cs655/readings/smalltalk.html
http://www.cs.virginia.edu/~evans/cs655/readings/smalltalk.html
http://homepages.ecs.vuw.ac.nz/~tk/fps/fps-sans-escher.pdf
http://homepages.ecs.vuw.ac.nz/~tk/fps/fps-sans-escher.pdf
ftp://ftp.cs.utk.edu/pub/maclennan/VOPL.pdf
http://scg.unibe.ch/archive/masters/Reng06a.pdf
http://wiki.moredesignpatterns.com/space/Value+Object
http://wiki.moredesignpatterns.com/space/Value+Object
http://www.cincomsmalltalk.com/cincomFiles/digest2007/CS070214-1-A4.pdf
http://www.cincomsmalltalk.com/cincomFiles/digest2007/CS070214-1-A4.pdf

	Complex Value Objects in Smalltalk
	Values by Example
	The Elements of Values
	The Creation of Values
	Implementation

	Using Values in System Design
	Interfaces
	Configurations
	Explorative Programming
	Other Applications

	Related Work
	Conclusions
	Outlook

