===== Implementing Pixmap support =====

Submitted by ChristianHaider on Thu, 2011-09-01 10:48

(this is for collecting my thoughts)

I need to implement shadows for a client. The example was created with Illustrator CS5 and has a couple of pixmaps for painting and soft masks (transparency). I have to analyse the pixmaps in order to reconstruct the shadow algorithm of Illustrator (called "Schlagschatten" in Germen; could be "cast shadow" in English).

Therefore, I need to read the pixmaps from the PDF - and being able to write them when I create them. PDF defines Images (/ImageXObject) as rectangular grid of colour values. An image is organized in rows: the first value is the colour in the top left corner with coordinates 1 @ 1. The next value is the next colour in the row right beside the last at 2 @ 1 and so on. The size of the rows is given by the required attribute /Width of /ImageXObject. The number of rows is given with /Height. The colour value in each cell is defined by the /ColorSpace attribute which knows how many components a colour in this space has (f.ex. /DeviceRGB has 3 components, /DeviceCMYK has 4, /Indexed and /DeviceGray 1). The size of one component is given by /BitsPerComponent.

Therefore, I need to implement colour spaces properly, i.e. have a real colour space object after reading. I have defined all colour space classes grouped in Families as Values as placeholders for the real ones when I need them. The objective of this first implementation was to have /DeviceCMYK and /DeviceGray colour space objects which know how to set the stroking and filling colours in a renderer. Now I have to do this right.

Unfortunately, colour space types dont follow the Smalltalk class hierarchy very well. The current implementation has two hierarchies: for Values and for Objects. Dictionary is defined as Object and serves as super class for most PDF objects. Especially Stream is a Dictionary which is super class to many PDF objects. So far, the Smalltalk hierarchy worked well except for two monsters: /Function and /Shading. There are 4 types of /Function where 2 are Dictionaries and 2 are Streams. /Shading has 7 types with 3 Dictionaries and 4 Streams. I got away with that by defining the attributes for both subhierarchies. F.ex. a /Function attribute would have

This is clearly not as good as saying
 .

With colour spaces this is even worse, because they can be Names or Arrays:
	 Device colour spaces
	 /DeviceGray

	 /DeviceRGB

	 /DeviceCMYK

	 CIE based colour spaces
	 [/CalGray dictionary]

	 [/CalRGB dictionary]

	 [/Lab dictionary]

	 [/ICCBased stream]

	 Special colour spaces
	 [Indexed base hival lookup]

	 /Pattern or
[/Pattern underlyingColourSpace]

	 [/Separation name alternateSpace tintTransform]

	 [/DeviceN names alternateSpace tintTransform] or
[/DeviceN names alternateSpace tintTransform attributes]

I will try the following implementation strategy: define the colour spaces as subclasses of **/Name** and **/Array** and add the abstract class **/ColourSpace**. Then the typing must be extended so that all the colour space classes scattered around the implementation hierarchy are recognized as being of type class **/ColourSpace**.

The implementation hierarchy of colour spaces:

	 /Name
	 /DeviceColourSpace
	 /DeviceGray

	 /DeviceRGB

	 /DeviceCMYK

	 /Pattern

	 /Array
	 /CIEColourSpace
	 /CalGray

	 /CalRGB

	 /Lab

	 /ICCBased

	 /SpecialColourSpace
	 /Indexed

	 /UncolouredPattern

	 /Separation

	 /DeviceN

Class **/ColourSpace** as new **/TypeClass**.

	 /Entity
	 /TypeClass
	 /ColourSpace

	 /Function

	 /Shading

A **/TypeClass** should not be instantiated, but serve as dispatcher for the type machinery.

Now I need tests to see how this should look like in code...

Lets see - I'll write a doc page for this: [[typing]].